(hi-res) Global Model Intensity Forecasts

Mike Fiorino NOAA ESRL/GSD/AMB

BestTrack Vmax v Model Vmax

$$V_{\max}^{BT} = \alpha V_{\max}^{M} + \beta$$

- want model V_{max} to represent BT/NHC V_{max}
- α = 'aliasing factor' or how the model V_{max} is not representative of the BT
- typically model < BT or $\alpha > 1.0$
- β = bias :: constant in 'l' trackers
- α =1.0; β =0.0 from trackers...

some meteorology/modeling considerations

$$V_{\text{max}}^{Model} = f(x,y)$$

$$\alpha = f(\Delta t^{M}, \Delta x^{M}, \Delta x^{GRID})$$

$$\alpha > 1$$

- model intensity depends on track, i.e., TC intensity depends on location relative to synoptic forcing (e.g., shear)
- α = 'aliasing factor'
 - BT is 2 min wind, therefore model Vmax depends on model time step/grid spacing/dissipation... – modeling factors
 - data grid spacing (Walsh et al. 2007)

model V_{max} always comes from PostProcessing...

- Model PostP V_{max} from model solution
 - trackers
 - dependence on algorithm (!= 0.0 ~ I-2 kt and 2-5 nm;TM v MF tracker)
 - dependence on grid spacing of data grid
 - 'diag file' :: storm/environment variables for dynamical-statistical models such as SHIPS/LGEM
 - synoptics ⇒ Vmax
- Tracker PostP modify the tracker output
 - ATCF 'l' or 6-h interp/extrap PostP to make 'late' models

aliasing factor from data grid considerations

• Walsh et al. 2007 (JClim) – how the resolved V_{max} varies with grid resolution for a TS (35 kt) vortex

intensity metric(s)

- mean abs error = abs(Model Vmax BT Vmax) = MAE
 - standard verification
- mean error = bias
 - MAE = random if bias = 0
 - if MAE = bias :: no value in forecasting? can't tell if forecast is all bias or actual change?
 - bias in model :: initial vortex 0-48 h; modeling 48-120 h
- ratio of bias/MAE
 - low :: useful (?)

tracker dependence on data grid spacing

LANT 2010 1deg v hi-res ECMWF :: no tracker PP Bias = mean(diff) -- bars ; Error = mean(abs(diff)) -- lines

bias at T120 ~ 4 kt mean obs ~ 79 kt

bias at $\tau 0 \sim 18kt \Rightarrow$

model storm in hi-res data not only more intense but smaller compared to initial vortex

!!max Vmax @ τ 36 = 123 kt with hi-res; 86 kt with 1°!!

- huge diff between ecmwf tracker with full res grid (~20 km) v data grid at NCEP (~100km)
- need full res grids from GFS (0.25°) vice 0.5°

tracker PostP – ATCF 'l' tracks, but offset t=0 vice t=6

LANT 2010 hi-res ECMWF no PP v MF Vmax PostP Bias = mean(diff) -- bars; Error = mean(abs(diff)) -- lines

- NHC PostP for Vmax :: $\alpha != 1.0$ (smoothing), $\beta = constant$
- MF PostP :: $\alpha = 1.0$; $\beta = f(\tau)$ similar to GHMI (full Vmax offset at $\tau = 0$; 0 offset at $\tau = 24$) except offset goes to 0 at $\tau = 72h$

ratio bias/MAE

LANT 2010 1deg v hi-res ECMWF v MF Vmax PostP Ratio abs(bias)/mean(abs) Intensity Error [%] :: percentage of Error from bias

- MF PostP effective at reducing ratio bias/MAE
- full res has lower ratio v l° grids

LGEM:: non-tracker PostP

LANT 2010 hi-res ECMWF w/ MF Vmax PostP v ECMWF LGEM v NHC LGEM Bias = mean(diff) -- bars ; Error = mean(abs(diff)) -- lines

ECMWF LGEM ~ 15kt @ τ72; hfip baseline 16 kt

LGEM:: non-tracker PostP

LANT 2010 hi-res ECMWF w/ MF Vmax PostP v ECMWF LGEM v NHC LGEM :: ratio bias/MAE Ratio abs(bias)/mean(abs) Intensity Error [%] :: percentage of Error from bias

NHC LGEM best (lowest) ratio

comments/what's next...

- hi-res ecmwf tracker
 - has low V_{max} bias at T120
 - global model capable of making big winds (124 kt)!
- need to run tracker with full-res grids for intensity
- tracker v non-tracker PostP
 - revise ATCF tracker PostP for intensity make offsets function of T
 - LGEM superior V_{max} forecast
- MF tracker PostP
 - experiment with different offset functions for both position and intensity; better tracker errors with no offset at τ72-120h
- LGEM
 - · create diagfile for 'l' trackers
 - consensus of global model LGEM

